CSP 2017-12-2 游戏

问题描述
  有n个小朋友围成一圈玩游戏,小朋友从1至n编号,2号小朋友坐在1号小朋友的顺时针方向,3号小朋友坐在2号小朋友的顺时针方向,……,1号小朋友坐在n号小朋友的顺时针方向。
  游戏开始,从1号小朋友开始顺时针报数,接下来每个小朋友的报数是上一个小朋友报的数加1。若一个小朋友报的数为k的倍数或其末位数(即数的个位)为k,则该小朋友被淘汰出局,不再参加以后的报数。当游戏中只剩下一个小朋友时,该小朋友获胜。
  例如,当n=5, k=2时:
  1号小朋友报数1;
  2号小朋友报数2淘汰;
  3号小朋友报数3;
  4号小朋友报数4淘汰;
  5号小朋友报数5;
  1号小朋友报数6淘汰;
  3号小朋友报数7;
  5号小朋友报数8淘汰;
  3号小朋友获胜。
  给定n和k,请问最后获胜的小朋友编号为多少?
输入格式
  输入一行,包括两个整数n和k,意义如题目所述。
输出格式
  输出一行,包含一个整数,表示获胜的小朋友编号。
样例输入
5 2
样例输出
3
样例输入
7 3
样例输出
4
数据规模和约定
  对于所有评测用例,1 ≤ n ≤ 1000,1 ≤ k ≤ 9。

阅读更多

CSP 2018-3-2 碰撞的小球

问题描述
  数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
  当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
  当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
  现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
提示
  因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
  同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
输入格式
  输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
  第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
输出格式
  输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。
样例输入
3 10 5
4 6 8
样例输出
7 9 9
样例说明
  初始时,三个小球的位置分别为4, 6, 8。

  一秒后,三个小球的位置分别为5, 7, 9。

  两秒后,第三个小球碰到墙壁,速度反向,三个小球位置分别为6, 8, 10。

  三秒后,第二个小球与第三个小球在位置9发生碰撞,速度反向(注意碰撞位置不一定为偶数),三个小球位置分别为7, 9, 9。

  四秒后,第一个小球与第二个小球在位置8发生碰撞,速度反向,第三个小球碰到墙壁,速度反向,三个小球位置分别为8, 8, 10。

  五秒后,三个小球的位置分别为7, 9, 9。

样例输入
10 22 30
14 12 16 6 10 2 8 20 18 4
样例输出
6 6 8 2 4 0 4 12 10 2
数据规模和约定
  对于所有评测用例,1 ≤ n ≤ 100,1 ≤ t ≤ 100,2 ≤ L ≤ 1000,0 < ai < L。L为偶数。
  保证所有小球的初始位置互不相同且均为偶数。

阅读更多

CSP 2018-9-2 买菜

问题描述

  小H和小W来到了一条街上,两人分开买菜,他们买菜的过程可以描述为,去店里买一些菜然后去旁边的一个广场把菜装上车,两人都要买n种菜,所以也都要装n次车。具体的,对于小H来说有n个不相交的时间段[a1,b1],[a2,b2]…[an,bn]在装车,对于小W来说有n个不相交的时间段[c1,d1],[c2,d2]…[cn,dn]在装车。其中,一个时间段[s, t]表示的是从时刻s到时刻t这段时间,时长为t-s。
  由于他们是好朋友,他们都在广场上装车的时候会聊天,他们想知道他们可以聊多长时间。

输入格式

  输入的第一行包含一个正整数n,表示时间段的数量。
  接下来n行每行两个数ai,bi,描述小H的各个装车的时间段。
  接下来n行每行两个数ci,di,描述小W的各个装车的时间段。

输出格式

  输出一行,一个正整数,表示两人可以聊多长时间。

样例输入

4
1 3
5 6
9 13
14 15
2 4
5 7
10 11
13 14

样例输出

3

数据规模和约定

  对于所有的评测用例,1 ≤ n ≤ 2000, ai < bi < ai+1,ci < di < ci+1,对于所有的i(1 ≤ i ≤ n)有,1 ≤ ai, bi, ci, di ≤ 1000000。

阅读更多

CSP 2018-12-2 小明放学

题目背景

  汉东省政法大学附属中学所在的光明区最近实施了名为“智慧光明”的智慧城市项目。具体到交通领域,通过“智慧光明”终端,可以看到光明区所有红绿灯此时此刻的状态。小明的学校也安装了“智慧光明”终端,小明想利用这个终端给出的信息,估算自己放学回到家的时间。

问题描述

  一次放学的时候,小明已经规划好了自己回家的路线,并且能够预测经过各个路段的时间。同时,小明通过学校里安装的“智慧光明”终端,看到了出发时刻路上经过的所有红绿灯的指示状态。请帮忙计算小明此次回家所需要的时间。

输入格式

  输入的第一行包含空格分隔的三个正整数 r、y、g,表示红绿灯的设置。这三个数均不超过 106。
  输入的第二行包含一个正整数 n,表示小明总共经过的道路段数和路过的红绿灯数目。
  接下来的 n 行,每行包含空格分隔的两个整数 k、t。k=0 表示经过了一段道路,将会耗时 t 秒,此处 t 不超过 106;k=1、2、3 时,分别表示出发时刻,此处的红绿灯状态是红灯、黄灯、绿灯,且倒计时显示牌上显示的数字是 t,此处 t 分别不会超过 r、y、g。

输出格式

  输出一个数字,表示此次小明放学回家所用的时间。

样例输入

30 3 30
8
0 10
1 5
0 11
2 2
0 6
0 3
3 10
0 3

样例输出

46

样例说明

  小明先经过第一段路,用时 10 秒。第一盏红绿灯出发时是红灯,还剩 5 秒;小明到达路口时,这个红绿灯已经变为绿灯,不用等待直接通过。接下来经过第二段路,用时 11 秒。第二盏红绿灯出发时是黄灯,还剩两秒;小明到达路口时,这个红绿灯已经变为红灯,还剩 11 秒。接下来经过第三、第四段路,用时 9 秒。第三盏红绿灯出发时是绿灯,还剩 10 秒;小明到达路口时,这个红绿灯已经变为红灯,还剩两秒。接下来经过最后一段路,用时 3 秒。共计 10+11+11+9+2+3 = 46 秒。

评测用例规模与约定

  有些测试点具有特殊的性质:
  * 前 2 个测试点中不存在任何信号灯。
  测试点的输入数据规模:

  • 前 6 个测试点保证 n ≤ 103。

  • 所有测试点保证 n ≤ 105。

阅读更多